

CHANGES IN THE FIBROSIS-4 (FIB-4) SCORE ACCURATELY REFLECTS THE DISEASE TRAJECTORY OF METABOLIC DYSFUNCTION ASSOCIATED STEATOTIC LIVER DISEASE

V. JAHAGIRDAR¹, B. MUNOZ², A. MOSPAN², P. NEWSOME³, B. NEUSCHWANDER-TETRI⁴, K. CUSI⁵, A. BARRITT⁶, M. FRIED², A.J. SANYAL¹

- 1. Virginia Commonwealth University, Richmond, Virginia, USA
- 2. Target RWE, Durham, North Carolina, USA 3. Foundation for Liver Research and King's College Hospital; University of Birmingham, United Kingdom
- 4. Saint Louis University. St. Louis. Missouri. USA
- 5. University of Florida-Gainesville, Gainesville, Florida, USA6. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

TARGET RWE BETTER HEALTH

Introduction

- A FIB-4 score of 1.3-2.6 reflects an intermediate risk stratum of MASLD where secondary tests with VCTE or repeat testing is recommended.
- VCTE is not however universally available and the utility of repeat FIB-4 testing to assess changes in clinical status in MASLD is not known.
- This is particularly relevant since MASLD can both progress and regress without specific intervention.
- We hypothesized that changes in FIB-4 will coordinately track the risk of clinical outcomes in MASLD.

Aim

The aim of this study was to define the performance of changes in **FIB-4** as a disease-monitoring test in MASLD.

Methods

- A retrospective analysis of a US cohort with MASLD followed prospectively in a non-interventional longitudinal registry (TARGET-NASH) was performed.
- MASLD was diagnosed by metabolic risk factors, histology or NITs, and AUDIT score < 7¹. Adults with FIB-4 between 1.3-2.6 who had 2 FIB-4 measurements > 6 months apart within 3 years from baseline and a total of 5 years of follow up were included.
- Changes in FIB-4 from baseline to year 3 were associated with clinical outcomes occurring between years 3 and 5.
- Key outcomes included all-cause mortality and major adverse liver outcomes (MALO), defined as ascites, overt hepatic encephalopathy, or variceal hemorrhage.
- Time-to-event analysis were conducted to evaluate the association between FIB-4 changes and the risk of clinical outcomes, adjusting for age, type 2 diabetes, and other potential confounders.
- Bootstrap validation confirmed the robustness of the model results.

Results

Table 1. Patient Characteristics at Index Date for Participants with FIB-4 1.3- 2.6

Patient Characteristics	Values (N =687)
Demographics	
Age at Index Date (years)	
Mean (SD)	60 (9.6)
Range (Min-Max)	21.0 - 86.0
Sex, n (%)	207 (56 204)
Female	387 (56.3%)
Male De see Ethericity in (0/)	300 (43.7%)
Race- Ethnicity, n (%) Non-Hispanic White	439 (63.9%)
Lifestyle	433 (03.370)
BMI (kg/m²) at enrollment	
Mean (SD)	32.4 (7.2)
Min-Max	16.9 - 58.2
BMI(kg/m2) categories, n (%)	687
< 25 (Healthy Weight)	102 (15.0%)
25 - < 30 (Overweight)	187 (27.5%)
30 - < 35 (Obese)	174 (25.6%)
35 - < 40 (Severe Obesity)	110 (16.2%)
>=40 (Morbid Obesity)	106 (15.6%)
Alcohol use at enrollment, n (%)	687
Former	44 (6.4%)
Current	209 (30.4%)
Never	299 (43.5%)
Not reported AUDIT at enrollment	135 (19.7%)
Mean (SD)	1.1 (2.04)
Min - Max	0.0 - 18.0
	0.0 - 18.0
FIB-4 at enrollment	1 9 (0 25)
Mean (SD)	1.8 (0.35) 1.3 - 2.6
Min - Max	1.5 2.0
Comorbidities	
Type 2 Diabetes	282 (41.0%)
Hypertension	543 (79.0)
Obesity	390 (57.4%)

Index date is the first date within the 3-year retrospective period where the first FIB-4 > 1.3 and ≤ 2.6 .

- A total of 687 individuals were included in the study (Table 1).
- Between baseline and Year 3, **171 MALO** outcomes were recorded, with an additional **94** events occurring between Years 3 and 5. From baseline to Year 3, FIB-4 scores declined by more than 10% in 489 patients (71%) and increased by more than 10% in 198 patients (29%).
- An increase in FIB-4 was strongly associated with elevated MALO risk and incidence, HR 5.6 (95% CI: 3.0–10.2) (Fig. 1.2)
- Age and hypertension did not significantly influence MALO risk, whereas T2DM was associated with increased risk (OR 1.6, 95% CI: 1.1–2.4) (Fig. 2).

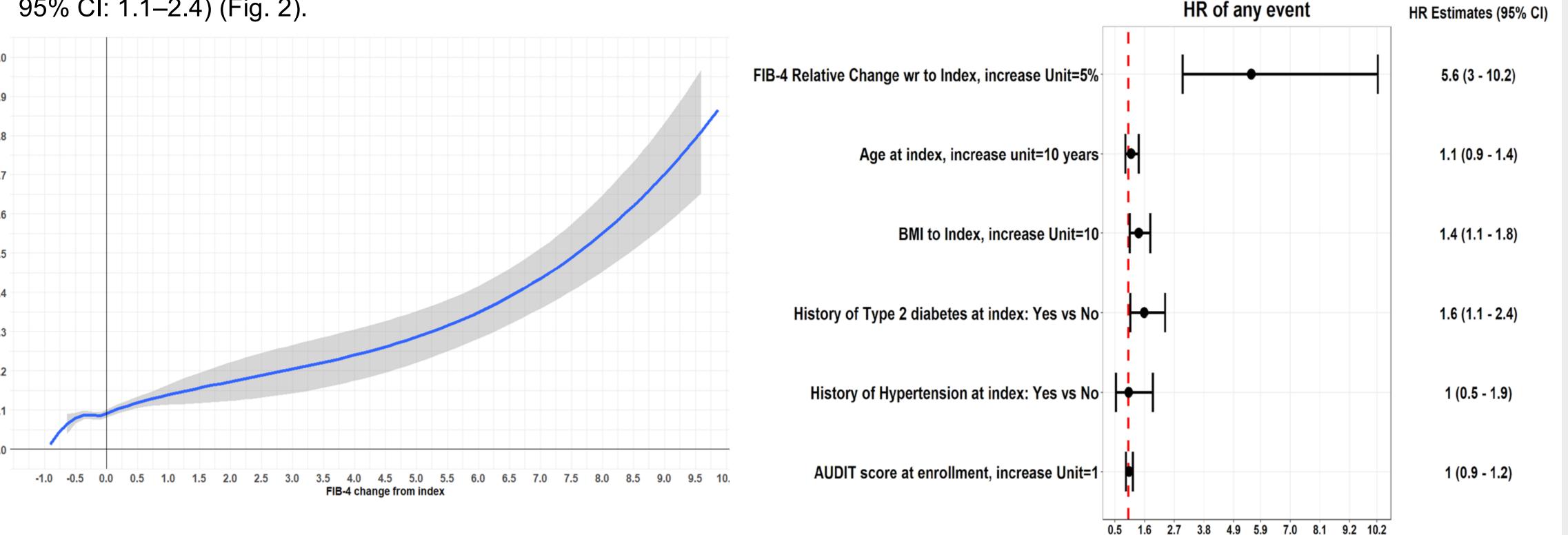


Figure 1. Probability of MALO Incidence compared to Change in FIB-4 from Index Date

Figure 2. Hazard Ratio for Any Outcome (MALO Events or Death)

Conclusion

Changes in FIB-4 over time are predictive of future adverse health outcomes, independent of baseline age.

An increase in FIB-4 was strongly associated with elevated MALO risk and incidence.

Tracking changes in FIB-4 can support risk stratification and clinical decision-making.

References

1. **Barritt A.S. et al.** High Concordance Between Nonalcoholic Fatty Liver Disease and Metabolic Dysfunction-Associated Steatotic Liver Disease in the TARGET-NASH Real-World Cohort. *Am J Gastroenterol 2024; 119(8):1624-1627*

Acknowledgements

- Target RWE communities are collaborations among academic & community investigators, the pharmaceutical industry, patient community advocates. Target RWE communities are sponsored by TARGET PharmaSolutions Inc (d.b.a., Target RWE).
- We would like to thank all investigators, participants, and staff associated withTARGET-NASH.
- ClinicalTrials.gov Identifier: NCT02815891.
- The authors acknowledge medical writing support by Dikshya Bastakoty, PhD.

Contact Information

Vinay Jahagirdar: Vinay.jahagirdar@vcuhealth.com

Full Abstract

